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Abstract

Nonlinear optical media of Kerr type are described by a particular version of an
anharmonic quantum harmonic oscillator. The dynamics of this system can be
described using the Moyal equations of motion, which correspond to a quantum
phase-space representation of the Heisenberg equations of motion. For the Kerr
system we derive exact solutions of the Moyal equations for an irreducible set of
observables. These Moyal solutions incorporate the asymptotics of the classical
limit in a simple, explicit form. An unusual feature of these solutions is that
they exhibit periodic singularities in the time variable. These singularities are
removed by the phase-space averaging required to construct the expectation
value for an arbitrary initial state. Nevertheless, for strongly number-squeezed
initial states the effects of the singularity remain observable.

PACS numbers: 03.65.Sq, 42.65.−k, 42.65.Hw

1. Introduction

Phase-space methods provide one of the most important tools to investigate the relation
between classical and quantum mechanics. In classical dynamics, the state of a system can
be described by a probability distribution that is a function of x ≡ (q, p), i.e., of position q
and momentum p of a particle. In quantum physics such a distribution cannot exist because
Heisenberg’s uncertainty relation prohibits simultaneous knowledge of q and p, but a number
of quasi-distributions have been proposed for a phase-space analysis of quantum systems
[1]. Among the most popular is the Wigner function which is related to the density matrix
ρ(q, q ′) = 〈q|ρ̂|q ′〉 of a particle by

W(x) = 1

πξ

∫ ∞

−∞
ρ(q − q ′, q + q ′) e 2ipq ′/ξ dq ′. (1)
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Usually the parameter ξ is replaced by h̄, but for reasons explained below we use ξ instead.
The Wigner function is not a probability distribution because it can have negative values,
which are often interpreted as an indication for genuine quantum effects.

The Wigner function and its time evolution for a given Hamiltonian have been applied to
analyze a huge variety of phenomena; in particular, during the last two decades it has been
used to analyze the quantum state of light [2]. However, to investigate the classical-quantum
correspondence the closely related concept of the Weyl symbol [Â]w of an operator Â is more
suitable. The Weyl symbol is an extension of the Wigner function (1), which arises when ρ̂

replaced by a general operator Â. For the special case of the density matrix it leads to the
relation [ρ̂]w = 2πξ W(x).

For an observable, the time evolution of its Weyl symbol is governed by the Moyal
equation

d

dt
Aw(t) = {Aw(t),Hw}M. (2)

Above Hw, Aw(t) are the Weyl symbols of the Hamiltonian and Â(t), respectively. The
Moyal bracket {·, ·}M , cf (A.4), is the quantum extension of the classical Poisson bracket. The
Moyal equation corresponds to a phase-space formulation of the operator-valued Heisenberg
equations of motion. The similarity between the Heisenberg equation for observables and the
classical equations of motion makes the Weyl symbol representation a powerful tool to shed
light on the relation between classical and quantum dynamics. The Moyal equation of motion
enables one to study the dynamics of observables without reference to the quantum state of
the system.

Despite these advantages the Moyal equation has not been used extensively to analyze
quantum systems because it is more difficult to solve than the Schrödinger equation. For
this reason not many exact solutions are known and a comparison with experimental data is
often not possible. The purpose of this paper is to improve this situation by providing an
exact solution of the Moyal equation for an experimentally relevant system: the Kerr model
of nonlinear optics for a single-mode of the quantized radiation field. We obtain analytical
solutions of the Moyal equations which are then used to characterize the transition from
classical to quantum dynamics and to provide a phase-space based physical interpretation of
the Kerr effect. Surprisingly it will turn out that the Weyl symbol representations for the
Heisenberg picture flow of the photon creation and annihilation operators diverge periodically.
We provide a systematic study of expectation values that clarifies the physical interpretation
and observational consequences of these time-dependent Moyal solution singularities.

This paper is organized as follows. In section 2, we review the basic properties of the
Kerr effect. Within the framework of the quantized Kerr model, the Moyal equation of motion
(2) is solved exactly in section 3 for the evolution of a family of observables constructed from
the creation and annihilation operators. The phase-space based classical limit is studied in
section 4. The exact Weyl symbol solutions of section 3 exhibit time-periodic singularities. In
section 5, we demonstrate that these singularities generate observable, finite peaks for certain
specific squeezed coherent states of light. Furthermore, we show in section 6 that all coherent
state expectation values of the Moyal equation solutions are free of singularities.

2. The Kerr model

The Kerr model of optical nonlinearities is one of the most studied systems in quantum optics.
In a Kerr medium, the refractive index of a classical beam of light depends on the light intensity
as n = n(0) + n(2)I , where n denotes the total refractive index, n(0) the linear refractive index,
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I the light intensity and n(2) the optical Kerr coefficient. The Kerr effect is invaluable for
spectral broadening and self-focusing of laser pulses [3]. It usually appears in special crystals
and its magnitude is typically so small that large light intensities are needed. However,
recent research on electromagnetically induced transparency [4–6] has made very large Kerr
coefficients with values of up to n(2) ≈ 0.1 cm2 W−1 possible [7–10] and may even lead to
nonlinear effects at the single-photon level [11–15].

A quantum description of the Kerr effect can be accomplished by replacing the intensity
of light in the refractive index by the corresponding operator. This is equivalent to introducing
a quartic interaction term in the radiation Hamiltonian [1]. A particularly simple description
can be achieved if the photon dynamics is confined by an optical cavity with high finesse
mirrors. Such cavities may support only a single light mode in a given spectral range, so
that the dynamics can be described by operators â, â† that annihilate or create a photon in the
cavity mode, respectively. The photon number operator is given by N̂ = â†â, and the Kerr
Hamiltonian is given by the Wick-ordered operator

Ĥ = ω2(â
†)2â2 + ω1â

†â. (3)

Physically, ω1 is related to the linear index of refraction by ω1 = kvgrn
(0) and ω2 to the

nonlinear refractive index by ω2 = kvgrn
(2)I0, where vgr is the group velocity of light in the

medium, k its wave number and I0 = 2h̄kc2/V the intensity of a single photon in a cavity
of volume V. We remark that this model assumes an ideal cavity that is lossless and which
is small enough so that the spatial propagation of photons is well described by a stationary
light mode. For a more complete description the quantum noise due to imperfect mirrors and
propagation effects have to be taken into account [16].

The operators Ĥ , â act on the Hilbert space H = L2(R, C) and satisfy harmonic oscillator
commutation relations

[â, â†] = ξI, [N̂, â] = −ξ â, [N̂, â†] = ξ â†. (4)

With this notation we have introduced the real dimensionless parameter ξ that allows us to
interpolate between the classical limit (ξ = 0) and the full quantum evolution (ξ = 1). The
fundamental distinction between quantum and classical mechanics resides in commutivity.
The product of observables in classical mechanics is Abelian whereas the product operation in
quantum mechanics is noncommutative. As ξ → 0, noncommuting behavior in the Kerr model
is suppressed, and for ξ = 1 standard single-mode photon physics is recovered. Specifically,
the Moyal equation of motion automatically incorporates Bohr’s correspondence principle: in
the limit ξ → 0, the Moyal bracket becomes the Poisson bracket and equation (2) then turns
into the Poisson equation of motion.

The relation between ξ and the conventional ‘quantization parameter’ h̄ can be seen by
relating the creation and annihilation operators to two Hermitian operators via â = (q̂+ip̂)/

√
2

and â† = (q̂ − ip̂)/
√

2. For dimensionless position and momentum operators x̂ ≡ (q̂, p̂) =
(x̂1, x̂2), one then has

[x̂j , x̂k] = iξJjk J =
(

0 1
−1 0

)
, (5)

where J is the Poisson matrix. In a coordinate parametrization where q̂ is proportional to length
and p̂ to momentum, [x̂j , x̂k] = ih̄Jjk , so the limit ξ → 0 is equivalent to letting Planck’s
constant h̄ go to zero for a conventional quantum harmonic oscillator. We use ξ instead of
h̄ because in quantum optics the operators â, â† have a different physical interpretation than
for a single Schrödinger particle in a harmonic potential. As a consequence, their degree of
commutativity is not controlled by h̄, but rather by the mathematically introduced deformation
parameter ξ .
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Throughout our derivations free use is made of the Weyl symbol calculus that represents
Hilbert space operators by functions in phase space. An overview of this quantum phase-space
representation and its non-commutative � product is presented in appendix A.

3. The Moyal–Kerr problem and its solution

In this section we describe Heisenberg picture evolution in Weyl symbol form, identify the
symmetries of the Moyal equation of motion and use these symmetries to construct an exact
solution.

The Weyl symbol representation of the Hamiltonian (3) is

[Ĥ ]w ≡ H(ξ, x) = ω2
[

1
4x4 − ξx2 + 1

2ξ 2] + ω1
[

1
2x2 − 1

2ξ
]
, (6)

where x2 = q2 + p2. The ω2 term is the phase-space form of the nonlinear interaction. The
ω1 portion is the symbol of the number operator [N̂ ]w(x) = N(x) = 1

2 (x2 − ξ) and represents
the evolution of non-interacting photons.

First, consider the Moyal equation for a general observable. Denote Schrödinger evolution
by Ut = exp(−itĤ /ξ). Let �̂0 be an observable with dynamical value �̂(t) = U

†
t �̂0 Ut and

Heisenberg equation
d

dt
�̂(t) = iξ−1[Ĥ , �̂(t)]. (7)

The Weyl symbol image of equation (7) is Moyal’s equation (2). Let �(t |x) ≡ [�̂(t)]w(x) be
the symbol of the evolving observable, then

�̇(t |x) = {�(t),H }M(x) = iξ−1(H � �(t) − �(t) � H)(x)

= iξ−1(H(L) − H(R))�(t |x). (8)

In the last identity, we employ the expression of the Moyal bracket in terms of the left and
right operators L and R which are defined in equation (A.7). It converts the Moyal bracket
into a differential operator acting on the target function �(t |x). Evaluating, H(L) − H(R)

for Hamiltonian (6) one obtains the following third-order differential equation:

�̇(t |x) = −
[
ω2

(
x2 − 2ξ − ξ 2

4
∂2
x

)
+ ω1

]
(x · J∂x)�(t |x). (9)

To fully characterize a quantum system, equation (9) needs to be solved for a comprehensive
set of operators. For the Kerr–Moyal problem, such a set is given by {(â†)s âm|0 � s,m ∈ N}.
This irreducible family of operators is equivalent to all polynomials in q̂ and p̂.

We denote by

�sm(t |x) ≡ [(â(t)†)s â(t)m]w(x) (10)

the Weyl symbol of the corresponding operators in the Heisenberg picture, where â(t) =
U

†
t â Ut . Our task is to solve equation (9) for the set of symbols �sm(t |x) with initial

conditions �sm(0|x) ≡ [(â†(0))s â(0)m]w(x).
Moyal equation (9) has the form of a Schrödinger equation over the x-variable manifold.

Specifically, the function �sm(t |x) may be considered an unnormalized ‘state’ over the
manifold T ∗

R = R
2. This is a general feature of the Moyal equation and has been used

to construct WKB-type asymptotic approximations [17] for �(t |x). The system (9) admits a
standard [18] small ξ expansion because the highest order differential operator, the Laplacian
∂2
x , is scaled by ξ 2.

Quantities like L and R act on the Weyl symbols �sm(t |x), while operators like â act on
the usual Hilbert space. To distinguish between these two cases we use a hat to denote the
latter and script capital letters denote operators acting on the Hilbert space H2 = L2(R2, d2x).
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It is now useful to determine the symmetries present in the equation of motion (9). In this
context it is advantageous to introduce complex coordinates z = (q +ip) and ∂z = 1

2 (∂q − i∂p).
In this notation [â]w(x) = a(x) = z/

√
2 and [â†]w(x) = a(x)∗ = z∗/

√
2. Because a is a

linear function: a � a = a2, etc, giving

[âm]w(x) = 2−m/2zm, [(â†)s]w(x) = 2−s/2z∗s .

Employing equation (A.8) it is then straightforward to show that the initial condition is

�sm(0|x) = a(L)sam(x) =
[

1√
2
(z∗ − ξ∂z)

]s (
z√
2

)m

=
min(s,m)∑

l=0

W(m, s, l)

(
−ξ

2

)l

as−l (x) am−l (x) (11)

with W(m, s, l) ≡ s!m![l!(s − l)!(m − l)!]−1. For the set of operators under consideration,
the Kerr–Moyal equation (9) then becomes

�̇sm(t |x) = − [ω2K + ω1] (x · J∂x)�sm(t |x) (12)

with

K ≡ |z|2 − 2ξ − ξ 2∂z∂z∗ = x2 − 2ξ − ξ 2

4
∂2
x

(x · J∂x) = i(z∂z − z∗∂z∗).

The action of the phase-space operator (x · J∂x) is similar to that of the angular momentum
operator L̂z on Hilbert space. This can be easily seen in polar coordinates, z = reiφ , where it
takes the form (x · J∂x) = ∂φ . Furthermore, the initial condition �sm(0|x) is an eigenstate
of (x · J∂x) with eigenvalue λsm = i(m − s). Because [K, (x · J∂x)] = 0 we can infer that
�sm(t |x) will remain an eigenstate of (x ·J∂x) with the same eigenvalue. Via this eigenfunction
mechanism the third-order partial differential equation (12) is reduced to second order

�̇sm(t |x) = −i(m − s) [ω2K + ω1] �sm(t |x). (13)

We remark that if m = s the right-hand side of equation (13) is zero. This means that
�mm(t |x) = (x2/2)m is a constant of motion. This function is also a classical constant of
motion because {H, x(2m)} = 0.

Equation (13) has the formal solution

�sm(t |x) = e−i(m−s)ω1t e−i(m−s)tω2K�sm(0|x). (14)

We can now take advantage of the special form (11) of the initial conditions. It is well known
cf [19, p 40] that eK̂Â = erÂeK̂ for [K̂, Â] = rÂ and r ∈ C. Because[

K, 1√
2
(z∗ − ξ∂z)

] = ξ 1√
2
(z∗ − ξ∂z)

we can express the formal solution as

�sm(t |x) = 2−s/2 exp(−i(m − s)t (ω1 + ω2ξs))(z∗ − ξ∂z)
se−i(m−s)tω2K

(
z√
2

)m

= 2−s/2 exp(−i(m − s)tω2ξs)(z∗ − ξ∂z)
s�0m(m−1(m − s)t |x).

It is therefore sufficient to find a closed form for �0m(t |x). To do so we make the ansatz

�0m(t |x) = eg(t)x2
e−im(ω1−2ξω2)tf (t) am(x) , (15)

with initial conditions g(0) = 0 and f (0) = 1. Inserting this ansatz into equation (13) and
sorting the resulting equation in powers of |z|2 yields a coupled set of differential equations
for g(t) and f (t),

ġ = imω2(−1 + ξ 2g2), ḟ = im(m + 1)ξ 2ω2gf,

5
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which have the solutions

g(t) = − i

ξ
tan(mξω2t), f (t) = (sec(mξω2t))

m+1.

This leads to one of the main results of this work: the exact solution of the Moyal equation
for the family of operators (â†)s âm is given by

�sm(t |x) = e−i(m−s)ω1t ei(2−s)t̃ (sec t̃ )m+1

(
z∗ − ξ∂z√

2

)s

exp

(
− i

ξ
zz∗ tan t̃

)(
z√
2

)m

(16)

with t̃ ≡ (m − s)ξω2t . Evaluating the s-fold derivative and converting to the phase-space
variables x yields

�sm(t |x) = e−i(m−s)ω1t (sec t̃ )s+m+1 exp

(
2i t̃ − i

x2

ξ
tan t̃

)
×

min(s,m)∑
l=0

W(m, s, l)

(
−ξ

2
e−it̃ cos t̃

)l

as−l (x) am−l (x). (17)

This final form displays the adjoint symmetry: [(â(t)†)s â(t)m]† = (â(t)†)mâ(t)s , or
equivalently �sm(t |x)∗ = �ms(t |x).

A striking feature of the solutions (17) is that they have a singular amplitude for times
whenever cos t̃ = 0. Henceforth we will refer to this behavior as the Moyal singularity. Its
mathematical origin is that g(t) obeys a nonlinear Ricatti equation.

4. Classical and quantum trajectories

The manner in which quantum phase-space solutions embed the classical dynamics occurs in
two different ways. In the first way, one characterizes how the solutions �sm(t |x) transform
into the Poisson equation solutions as ξ → 0. The second semiclassical association relates
quantum expectation values to corresponding classical flows. The first way, the phase-space
correspondence, is treated in this section.

Quantum trajectories on phase space are defined as the symbol image of the Heisenberg
coordinate operator evolution: x̂(t) = U

†
t x̂ Ut , in detail

Z(t, ξ |x) ≡ [x̂(t)]w(x) = ([q̂(t)]w, [p̂(t)]w]) (x). (18)

The Moyal solutions above give formulae for Z(t, ξ |x) via the relationships

[q̂(t)]w(x) = 1√
2
(�01(t |x) + �10(t |x)) =

√
2Re�01(t |x),

[p̂(t)]w(x) = 1√
2
(�01(t |x) − �10(t |x)) =

√
2Im�01(t |x).

The dynamics for the classical version of the Kerr problem is simple. The ξ = 0 part of
H(ξ, x) defines the classical Hamiltonian

H(ξ, x) = Hcl(x) + ξh1(x) +
ξ 2

2!
h2(x),

Hcl(x) = 1

4
ω2x

4 +
1

2
ω1x

2 h1(x) = −ω2x
2 h2(x) = 1

2
ω2.

The classical trajectory Zcl(t |x) = (qcl(t |x), pcl(t |x)) is then the solution of Hamilton’s
equation

Żcl(t |x) = J∂xHcl(Zcl(t |x))

6
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with initial condition Zcl(0|x) = x. The solution is Zcl(t |x) = [exp t (ω2x
2 + ω1)J ] x. In

matrix form this is

Zcl(t |x) =
(

qcl(t |x)

pcl(t |x)

)
=

(
cos(ω2x

2 + ω1) t sin(ω2x
2 + ω1) t

−sin(ω2x
2 + ω1) t cos(ω2x

2 + ω1) t

) (
q

p

)
. (19)

This is oscillatory motion with a variable frequency ω2x
2 +ω1 that depends on the initial value,

x. The frequency increases as the constant of motion x2 increases.
To compare the classical and the quantum trajectory it is useful to introduce the complex

quantity

acl(t |x) ≡ 1√
2
(qcl(t |x) + ipcl(t |x)) = e−i(ω2x

2+ω1) t 1√
2
(q + ip), (20)

which is the classical quantity corresponding to the annihilation operator. It agrees with the
predictions of the Kerr model for the complex electric field amplitude of classical light: the
leading phase factor represents the phase shift that light would experience when it travels
through a nonlinear medium of length L = tvgr. In an optical system, x2 represents the mean
number of photons in the cavity, which can also be expressed as the intensity of the light field
in units of the intensity of a single photon in the cavity.

Employing equation (19) we can express the related quantum trajectory as

�01(t |x) = sec2(ξω2t) ei�(ξ,x,t)acl(t |x), (21)

with the quantum phase factor

�(ξ, x, t) ≡ 2ξω2t + x2(ω2t − ξ−1 tan(ξω2t)). (22)

This phase vanishes at ξ = 0. If one implements a power series expansion of (21) about
ξ = 0, the result defines the semiclassical expansion of the Moyal solution. To first order in ξ

one has

�sc
01(t |x) = acl(t |x)[1 + 2iω2t ξ + O(ξ 2)]. (23)

Expressions (21)–(23) show how the periodic quantum and classical flows are interdependent.
If |ξω2t | � π/2 and |�(ξ, x, t)| � π/2 the quantum and classical trajectories nearly coincide.
This limit very well describes all experiments with conventional nonlinear optical crystals for
which the nonlinear refractive index n(2) is very small.

At the other extreme, when ξω2t is close to an odd multiple of π/2, the amplitude
factor sec2(ξω2t) is diverging and the quantum phase rotation �(ξ, x, t) is undergoing near
infinite oscillation. This regime should soon be experimentally accessible by using EIT-based
nonlinear media [7–10]. Below we will explore the degree to which large oscillations are
actually observable.

Figure 1 shows the quantum effect of the nonlinearity on the complex field amplitude
|acl(t |x)|, which is independent of x2. It can clearly be seen that the periodic divergences
disappear in the classical limit ξ → 0, and that even for a fully quantized theory (ξ = 1) they
only appear for very large nonlinear refractive indices.

Figure 2 displays the quantum phase factor � for a fully quantized theory (ξ = 1). Like
the amplitude it displays a periodic divergence in time. The width of the divergences in
phase space is proportional to x2, indicating that they are an intensity-dependent effect. The
divergences disappear in the classical limit ξ → 0.

Generally, not everything is rapidly oscillating. Recall that x2 is both a classical and
quantum constant of motion. At the classical level this constant is recovered from the flow
via Zcl(t, ξ |x)2 = x2. At the quantum level one has Z(t, ξ) � Z(t, ξ)(x) = x2. This latter
identity can be derived from Berezin’s representation (A.5) of the star product which leads to
a four-dimensional Fresnel integral with value x2.

7
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Figure 1. Magnitude of the ratio between the quantum
amplitude �01 and the classical amplitude acl.

Figure 2. Quantum phase factor �(ξ, x, t) for ξ = 1.

In the literature [20, 21], the quantum trajectory Z(t, ξ |x) is generally approximated by
a small ξ asymptotic approximation

Z(t, ξ |x) = Zcl(t |x) + ξz(1)(t |x) +
ξ 2

2!
z(2)(t |x) + · · · . (24)

In the Kerr–Moyal problem, and for most problems, this expansion has terms to all order in ξ .
The exception occurs when H is quadratic. In this special case just the leading term Zcl(t |x)

is nonzero. For this reason little can be learned about the general nature of the classical–
quantum transition by investigating quadratic Hamiltonian problems. This feature is seen in
Moyal solutions above. The effect of the x-quadratic part of Hamiltonian (6) on �sm(t |x) is
confined to the phase factor exp(−i(m − s)ω1t). This factor has no ξ or x dependence.

If an exact formula for Z(t, ξ |x) is known then these higher order expansion coefficients
are given by

z(n)(t |x) = ∂n

∂ξn Z(t, ξ |x)

∣∣∣
ξ=0

.

For example, the leading semiclassical correction to the classical Kerr problem flow is

z(1)(t |x) = ∂

∂ξ
Z(t, ξ |x)

∣∣∣
ξ=0

= −2 ω2t Zcl(t |x). (25)

The method for computing z(n)(t |x) when the full quantum trajectory is not available is to
expand the Moyal equation identity in powers of ξ . This approach works if both the observable
and the Weyl system Hamiltonian are semiclassical admissible, namely both admit a power
series expansion about ξ = 0. This is the situation in the Kerr problem. The O(ξ 1) portion of
the Moyal equation for Z(t, ξ |x) is an inhomogeneous Jacobi field equation for the unknown
z(1)(t |x), i.e. [

d

dt
− JH

′′
cl

(
Zcl(t |x)

)]
z(1)(t |x) = J∂xh1(Zcl(t |x)), (26)

with initial condition z(1)(0|x) = 0. The quantity H
′′
c is the Hessian matrix of Hc. Similar

equations define the higher order corrections z(n)(t |x). A Jacobi field is a solution of the
homogenous version of equation (26) and provides a linearized prediction for small deviations
about the classical flow Zcl(t |x).

One can readily check that z(1)(t |x) = −2 ω2t Zcl(t |x) is a solution to equation (26). This
demonstrates the compatibility of Z(t, ξ |x) in equation (18) with the standard asymptotic

8
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semiclassical expansion generated by equation (24). Formula (25) also illustrates the small
time limitation of this expansion. The z(1) correction has unbounded growth in t; in order for
the correction to be small one requires |2 ω2t | � 1. The next correction term z(2) grows like
x2(ω2t)

3. This shows that the expansion (24) is non-uniform in the (t, x) ∈ R × R
2 domain.

The conclusion, in the Moyal framework, that accurate semiclassical expansion of the
Kerr problem is only valid for very short times agrees with Milburn’s study [22] based on the
Q-function representation.

5. Dynamical expectation values and their classical limit

In this section, we compute the squeezed state expectation value of the Moyal solution
corresponding to q̂(t) and p̂(t) and characterize their semiclassical limits. The squeezed
states are of particular interest because they will allow us to study the effects of the singularity.
Furthermore, squeezed states are of high practical value because they correspond to non-
classical states of light which can be used for quantum information [23]. In addition, the
reduced noise of specific observables makes them of interest in high-precision experiments
such as gravitational wave interferometers [24].

Squeezed states are unitary modifications of coherent states. We recall the defining
equations for coherent and squeezed states. The coherent states |α〉, are translated vacuum
states (see, e.g., [1]). The translation operator D(α), α ∈ C, arg α ∈ [0, 2π) shifts â by

D†(α)âD(α) = â + αI, D(α) ≡ exp[ξ−1(αâ† − α∗â)].

Defining |α〉 = D(α)|0〉, it follows that â|α〉 = α|α〉. The states |α〉 have unit normalization
with inner product 〈α|β〉 = exp

[−ξ−1
(

1
2 |α|2 + 1

2 |β|2 − α∗β
)]

.
Given the coherent states one obtains the squeezed states by the action of a unitary

Bogoliubov operator, V (τ) ≡ exp[τ(â†)2 − τ ∗â2], τ = |τ | exp(iφ), φ ∈ [0, 2π). The
squeezed states |τα〉 ≡ V (τ)|α〉 are the eigenfunctions of

V (τ)âV (τ)†|τα〉 = α|τα〉.
Because V (τ) is unitary, the coherent state eigenvalue α and normalization 〈τα|τβ〉 = 〈α|β〉
are unchanged.

The coherent and squeezed states are interpreted as being near classical because they have
special properties with respect to the uncertainty relations. The squeezed state mean values are
readily found by exploiting the metaplectic nature of the Bogoliubov transform, specifically,

V (τ)x̂V (τ)† = S(τ) x̂

S(τ ) =
(

s cos2(φ/2) + s−1 sin2(φ/2) − 1
2 (s−1 − s) sin(φ)

− 1
2 (s−1 − s) sin(φ) s−1 cos2(φ/2) + s sin2(φ/2)

)
.

(27)

The parameter s ≡ exp(−2ξ |τ |) � 1 describes the amount by which the uncertainty of a
canonical variable can be reduced (see equation (28)). The set {S(τ)|τ ∈ C} is a family
of positive symplectic matrices with inverse S(τ)−1 = S(−τ) and group multiplication law
S(τ) 2 = S(2τ).

The q, p variances turn out to be [25]

〈�q〉2
τα = ξ

2

(
1

s2
cos2(φ/2) + s2 sin2(φ/2)

)
,

〈�p〉2
τα = ξ

2

(
s2 cos2(φ/2) +

1

s2
sin2(φ/2)

)
.

(28)

9
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Figure 3. Representation of squeezed states in the plane of complex amplitudes. Each ellipse is
centered at the mean value 〈â〉 with the principal axes corresponding to the uncertainties of the
canonical variables. The length of the axes is determined by the squeezing parameter s and the
direction of the ellipse by the phase factor φ. The parameter �φ appears in equation (35).

The uncertainty statement appropriate for this context is the Schrödinger–Robertson inequality:

〈�q〉2 〈�p〉2 � ξ 2

4
+ 〈F̂ 〉2, F̂ ≡ {q̂ − 〈q̂〉, p̂ − 〈p̂〉}sym, (29)

with the anti-commutator {X, Y }sym ≡ XY + YX. Employing (27) to evaluate F̂ gives
〈F̂ 〉τα = (ξ/4) (s−2 − s2) sin φ.

Combining these statements shows that the τα squeezed states are minimum uncertainty
states with respect to the Schrödinger–Robertson lower bound. In fact [26], a state that fulfils
the equality in (29) must be a squeezed state. We remark that the phase φ of the squeezing
parameter τ determines which of the canonical variables is squeezed: for φ = 0 (φ = π ) the
variance of p (q) is reduced by a factor of s, respectively. In other words, the angle variable
φ/2 rotates the semi-axis of the uncertainty ellipse with respect to the q, p-axis. This behavior
is usually visualized by representing the squeezed state as an ellipse in the complex α-plane
that indicates the uncertainties of the canonical variables, see figure 3.

The quantum phase-space representation of the expectation value is the phase-space
integral (A.9)

〈â(t)〉τα = 〈τα|â(t)|τα〉 = 1

2πξ

∫
�01(t |x)[|τα〉〈τα|]w(x) d 2x, (30)

where �01(t |x) is the symbol of â(t) = U
†
t â Ut .

Next we compute the Weyl symbol of [|τα〉〈τα|]w by relating it to the simpler quantity
[|α〉〈α|]w. From the coherent state wavefunction

〈q|α〉 =
(

1

πξ

)1/4

exp

[
1

ξ

(
−q2

2
+

√
2 α q − α Re α

)]
, (31)

one obtains the associated Wigner distribution. Let x = (q, p) = (
√

2 Re α,
√

2 Im α) be the
α coherent state mean values, then one has

[|α〉〈α|]w(q, p) = 2 exp ξ−1{−(q2 + p2) + 2q q + 2p p − (q2 + p2)}. (32)

The Weyl symbol (32) is real because |α〉〈α| is Hermitian. The squeezed generalization of
this follows from the Weyl symbol covariance property (A.10)

[|τα〉〈τα|]w(x) = [V (τ)|α〉〈α|V (τ)†]w(x) = [|α〉〈α|]w(S(τ ) x)

= 2 exp
1

ξ
[−x · S(2τ) x + 2x · S(τ) x − x · x ]. (33)

10
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The density matrix |τα〉〈τα| is projection operator that characterizes a pure ensemble of
photons with mean number

〈â†â〉τα = sinh2(2ξ |τ |) + |α cosh(2ξ |τ |) + α∗eiφ sinh(2ξ |τ |)|2.
The photon number is a constant of motion since â†â commutes with the Kerr Hamiltonian.

The integral (30) is conveniently computed by diagonalizing S(τ) and S(2τ). The phase-
space rotation

R(φ) =
(

cos φ/2 −sin φ/2
sin φ/2 cos φ/2

)
, R(φ)T = R(φ)−1 = R(−φ)

achieves this via

S(τ) = R(φ)�(s)R(−φ), �(s) =
(

s 0
0 s−1

)
.

Note the S(τ) eigenvalues λ1 = s, λ2 = s−1 are independent of φ and likewise the matrix
R(φ) is independent of s. The eigenvalues are positive because S(τ) > 0 and are mutual
inverses since det S(τ) = 1.

Introduce the variables y = R(−φ) x and

y = R(−φ)x =
(

q cos(φ/2) + p sin(φ/2)

−q sin(φ/2) + p cos(φ/2)

)
=

(
qφ

pφ

)
.

Changing the integration variable from x to y and employing the identity �01(t |R(φ)y) =
exp(iφ/2)�01(t |y) allows one to write the integral (30) as

〈â(t)〉τα = eiφ/2

πξ

∫
�01(t |y) exp

1

ξ
[−y · �(s2) y + 2y · �(s) y − y 2] d 2y. (34)

In displaying the final result it is useful to use the abbreviations

T = tan(ξω2t), G(T , s) = (1 + iT )2

(1 + is−2T )(1 + is2T )
.

Integral (34) is a generalized Gaussian integral and evaluates to

〈â(t)〉τα = α G 3/2

[
1

s
cos

(
ξω2t − �φ

2

)
+ is sin

(
ξω2t − �φ

2

)]
× exp(−i(ω1t + ξω2t − �φ/2))

× exp

{
−2i

T

ξ

|α|2 G

(1 + iT )2
[iT + s−2 cos2(�φ/2) + s2 sin2(�φ/2)]

}
. (35)

Here �φ = φ − 2 arg(α) is the difference between the squeezing angle and twice the phase
of the coherent state amplitude α.4 The branch cut for

√
G lies along the positive real axis.

The result above constructs the quantum mean 〈â(t)〉τα directly from the Moyal solution
�01(t |x). It describes in detail the dependence of the expectation value on the semiclassical
scaling parameter ξ as well has the squeezing and coherent state variables, τ and α. The
〈q̂(t)〉τα and 〈p̂(t)〉τα predictions are obtained from the real and imaginary parts of 〈â(t)〉τα .
We remark that result (35) agrees with an alternative derivation that does not use phase-space
techniques but employs the su(1,1) group structure of squeezing operators instead.

Formula (35) demonstrates that the functional structure of α−1〈 ˆa(t)〉τα with respect to four
initial state parameters {τ, α} depends on just the three variables |α|, s,�φ. The exponential
dependence on |α|2 reflects the nonlinear intensity dependence generic in the Kerr model. At
t = 0, the case �φ = 0 corresponds to phase squeezing: the uncertainty of the magnitude

4 The factor of 2 appears because a phase shift δ in the operator â changes D(α) to D(α e−iδ) but S(τ) to S(τ e−2iδ).
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of 〈â〉τα is increased and that of its phase factor is reduced. An example for phase squeezing
is the lighter ellipse shown in figure 3. On the other hand, �φ = π corresponds to number
squeezing: the uncertainty of |〈â〉τα|, which is the square root of the mean number of photons,
is decreased. This is the case for the darker ellipse shown in figure 3.

Note that solution �01(t |x) has different frequencies for different |x|. Thus the minimum
uncertainty character of the initial state |τα〉 is lost for t 
= 0 and restored at half-period
multiples, ξω2t = Nπ .

An important feature of the expectation value (35) is that for fixed s > 0 it is a
smooth bounded function in all variables; in particular, it does not display the Moyal
solution singularity when ξω2t approaches π/2. In order to interpret this we recall how
the Heisenberg uncertainty principle works in the quantum phase formalism. Weyl symbols
are often distributions and as such do not have any restrictions on localization or magnitude.
For example, the quantizer �̂(x ′) cf (A.1) is a bounded operator whose symbol is the delta
function δ(x ′ − x). The information about phase-space uncertainty is encoded in the Wigner
function [|τα〉〈τα|]w(x). Only when the expectation value integral (30) is evaluated are the
full effects of quantum uncertainty imposed. This phase-space integration averages out the
Moyal solution singularity giving a finite result.

However, one may ask whether there is a surviving signature of the Moyal singularity
in the observables 〈q̂(t)〉τα or 〈p̂(t)〉τα? For suitable values of τ, α the answer is yes. In the
following section, we will present a general argument that these effects should be most evident
for states similar to number-squeezed states, �φ = π . In figure 4, it can be seen that this
is indeed the case: for strong number squeezing (s � 1,�φ = π ) position and momentum
mean values are significantly enhanced around the singular point.

In contrast, in the case of phase squeezing (�φ = 0), the singular behavior of the Moyal
solution has virtually no effect on the mean amplitude (figure 5). We remark that the peak
in figure 5 appears at t = 0 and therefore corresponds to the mean value of position and
momentum in a squeezed coherent state prior to evolution.

Figure 4(a) suggests that a singularity does appear in the limit of infinite number squeezing.
However, for any fixed value ξω2t 
= π/2 we have lims→0〈â(t)〉τα = 0. On the other hand,
for fixed s we have

lim
ξω2t→π/2

〈â(t)〉τα = 1

s
exp

(
−2

|α|2
ξ

)
.

This indicates that the peak becomes infinitely narrow in the limit of infinite squeezing. We
remark that in current experiments a squeezing factor of about s = 0.1 can be achieved [27].

The general expectation value simplifies dramatically in several special cases. For
purely coherent states, τ = 0, expression (35) reduces to the well-known result (see, e.g.,
equation (40)) of [28])

〈â(t)〉τα|τ=0 = α exp

{
−iω1t − 2i

|α|2
ξ

sin(ξω2t) e−i(ξω2t)

}
. (36)

This no-squeezing result does not show any evidence of the Moyal solution singulary.
Next consider the small ξ behavior of 〈â(t)〉τα . In this limit all the noncommuting effects

of the Heisenberg algebra for q̂, p̂ are turned off. The Weyl symbol based semiclassical
expansion is constructed by replacing �01 with its semiclassical approximation (23) in the
evaluation of the integral (34). One finds

〈â(t)〉τα = acl(t |x) {1 + [2|τ |e i�� − 2|α|2ω2t (ω2t + 4i|τ | cos(��))]ξ + O(ξ 2)}. (37)

The leading ξ = 0 term is just the complex statement of the Kerr classical flow (20) with
the initial data (q, p) = (q, p) = √

2 (Re α, Im α). Formula (37) may also be obtained by

12
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(a) (b)

Figure 4. Mean (a) position and (b) momentum for number squeezed states (�φ = π ) for the
case α = ξ = 1.

(a) (b)

Figure 5. Mean (a) position and (b) momentum for phase squeezed states (�φ = 0) for the case
α = ξ = 1.

implementing a power series expansion of (35). However, the procedure using �sc
01(t |x) has

wider application in that it does not require an exact Moyal solution. The ξ -linear correction
factor senses the dependence on the squeezing |τ | and the phase ��. For this expansion to be
a good approximation to 〈â(t)〉τα the factor 1 in the curly bracket must be much larger than the
correction terms. For |α| = 1 this requires s ∈ (0.8, 1.0) and |ω2t | � 1. Though this region
of good approximation is an extremely small portion of the variable range shown in figures 4
and 5, it nevertheless covers a significant part of the experimentally accessible range.

6. Finite expectation values

The result that the Kerr dynamical flow of the Weyl symbol for both creation and annihilation
operators diverge periodically in time is surprising. Such time-periodic singularities are not
present in the harmonic oscillator basis or in the classical solution for the Kerr Hamiltonian. In
this section, we examine for general initial states whether such singularities could in principle
survive the phase-space averaging integral that defines an expectation value in the Weyl symbol
picture. The results of the previous section show that the squeezed state expectation values
of �01(t |x) are finite for all times. Here we show that the expectation values of the general
solution �sm(t |x), whose amplitude diverges as (sec t̃ )s+m+1, are finite for all quantum states

13
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of interest. A quick way to show this is to use the fact that in the Heisenberg picture the
dynamical annihilation operator is given by â(t) = e−2iω2tN̂ â(0), (ω1 = 0). At the time of
the singularity we have â = e−iπN̂ â(0) = P̂ â(0), where P̂ is the unitary parity operator [29].
Hence the condition for the expectation values to be finite is that for the state ρ̂ the expectation
values for all combinations of finite powers of P̂ â(0) and their adjoints are finite. This is the
case for all but some exotic quantum states.

In the following, we will show how finite expectation values emerge within the Moyal
representation by using the over-completeness of coherent states,

I = 1

πξ

∫
|α〉〈α| d2α.

We therefore can express the expectation value of an operator f̂ as

Tr(ρf̂ ) = 1

(πξ)2

∫
〈β|ρ|α〉〈α|f̂ |β〉 d2α d2β,

with ρ being the density matrix of the initial state of the system. Hence, to see if the
singularities can appear for any quantum state it is sufficient to investigate the matrix element
〈α|f̂ |β〉 of an operator. Using equation (A.3) we can express this matrix element as

〈α|f̂ |β〉 =
∫

f (x)〈α|�̂(x)|β〉 d2x,

with f being the Weyl symbol of f̂ . In the following, we will evaluate the integral over d 2x

for the set of Weyl symbols �sm(t |x). Using equations (31) and (A.2) it is not hard to see
that, in complex coordinates z = q + ip,

〈α|�̂(x)|β〉 = 1

πξ
exp

(
−zz∗

ξ
+

√
2

ξ
(βz∗ + α∗z) + C

)
(38)

where C ≡ −[|α|2 + |β|2 + 2βα∗]/(2ξ).

Using equations (16), (38), d 2x = 1
2 dz dz∗ and (A.9) this leads to

〈α|(â(t)†)s â(t)m|β〉 =
∫

�sm(t |x)〈α|�̂(x)|β〉 d2x

= e−i(m−s)ω1t (sec t̃ )m+1 ei(2−s)t̃

× 1

2

∫
〈α|�̂(x)|β〉

(
z∗ − ξ∂z√

2

)s

exp

(
− i

ξ
zz∗ tan(t̃)

) (
z√
2

)m

dz dz∗

= e−i(m−s)ω1t (sec t̃ )m+1 ei(2−s)t̃
(
α∗)s

× 1

2

∫
〈α|�̂(x)|β〉 exp

(
− i

ξ
zz∗ tan(t̃)

) (
z√
2

)m

dz dz∗,

where we have performed a partial integration and used that (z∗ + ξ∂z)〈α|�̂(x)|β〉 =√
2α∗〈α|�̂(x)|β〉. Performing the integration yields

〈α|(â(t)†)s â(t)m|β〉 = (α∗)s

2πξ
(sec t̃ )m+1 e−i(m−s)ω1t eC+i(2−s)t̃

(
ξ

2
∂α∗

)m

×
∫

e− zz∗
ξ

(1+i tan t̃ )+
√

2
ξ

(βz∗+α∗z) dz dz∗

= (α∗)sβm e−i(m−s)(ω1+(m+s−1)ξω2) t

× exp

(
− 1

2ξ
(|α|2 + |β|2) +

βα∗

ξ
e−2i(m−s)ξω2t

)
. (39)
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This result is in perfect agreement with the corresponding expression derived from the solution
of the ordinary Heisenberg equations of motion and thus demonstrates the consistency of the
Moyal–Kerr solution (17). For our discussion it is important to note that none of these matrix
elements contains a singularity. This means that the singularity can be considered as a feature
of the Moyal representation of quantum mechanics that does not generate divergent expectation
values.

An intuitive explanation of why the singularity does not show up in expectation values
is as follows. At the time t̃ when the amplitude of equation (17) diverges, the phase factor
diverges as well. However, the diverging factor in the phase contains the mean photon number
zz∗. Consequently, the phase divergence is different for states with different photon numbers.
Therefore, for t̃ sufficiently close to the singular value π/2, the phase factor would average to
zero for any state that has a variance in the number of photons.

Hence, the only chance to see the singularity would be in a state where the number
of photons is exactly, known, i.e., number states. But number states correspond to states
for which the phase is completely undetermined, so that any expectation value with s 
= m

would average to zero for any value of t̃ . Hence, the uncertainty relation �n�φ > 1/2 (see,
e.g., [30]) for photon number and phase prohibits the appearance of the Moyal singularity in
quantum-optical experiments.

Finally, it is instructive to relate the appearance of the peak for number-squeezed coherent
states to the phenomenon of quantum revivals [31–35]. In the Kerr Hamiltonian context
these revivals are discussed by Tata et al [36] and Toscano et al [37]. Revivals in quantum
mechanics generally appear when several transition amplitudes interfere constructively at
some time during the evolution. For the Hamiltonian (3) the evolution of a pure quantum state
in the number state basis |n〉 is given by

|ψ(t)〉 =
∞∑

n=0

e−iω2tn(n−1)ψn|n〉, (40)

where ψn = 〈n|ψ(0)〉 and ω1 = 0 for simplicity. At time ω2t = π/2 the phase factors are all
integer multiples of π in such a way that the phase factor for n + 2 is odd if that for n is even
and vice versa. So, if all the complex parameters ψn have the same phase, one has destructive
interference between n and n + 2 at this time. This is the case for the phase squeezed state of
figure 5 where both α and τ are positive real numbers. On the other hand, if the phases of ψn

and ψn+2 differ by π , we have constructive interference at time ω2t = π/2 so that a revival can
appear. Hence from the Schrödinger picture point of view the peak structures in figure 4 can
be interpreted as a revival phenomenon while from the Heisenberg picture, Weyl symbol point
of view it represents an outcome that originates from the phase-space singularity of �01(t |x).

In terms of Weyl symbols this equivalence between Schrödinger and Heisenberg pictures
is the identity ∫

�sm(t |x) ρ(0|x) d 2x =
∫

�sm(0|x) ρ(t |x) d 2x (41)

where ρ(t |x) = [|ψ(t)〉〈ψ(t)|]w(x). So all the observable consequences of time-dependent
revivals in the Wigner function ρ(t |x) are also captured by the periodic behavior of �sm(t |x).
There is some asymmetry in this equivalence. The phase-space distribution ρ(t |x) will depend
on the initial state |ψ(0)〉, whereas �sm(t |x) is state independent.

7. Conclusion

In this paper, we have derived an exact solution (16) for the Weyl symbol phase-space
representation of the Kerr model of nonlinear quantum optics. For the family of observables
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â(t)s(â(t)†)m these solutions are given in terms of elementary functions and have periods
T = 2π/ω2(m−s),m 
= s. The natural semiclassical limit for the Moyal equation is obtained
by scaling the commutation relation [â, â†] = ξI with a deformation parameter ξ . In the limit
ξ → 0 the Moyal bracket becomes the Poisson bracket and the dynamics becomes classical.
Two versions of this semiclassical limit are obtained: a phase-space, symbol representation
and an expectation value realization. Both of these, mutually consistent, approximations are
accurate in a time regime that is very short relative to the full period. However, this restricted
short-time domain is large enough to include most current experiments.

The Moyal solutions for �sm(t |x) have periodic singularities proportional to (cos(m −
s) ξω2t)

−s−m−1. These half-period singularities are absent in the classical solution. In order
to obtain dynamical expectation values associated with �sm(t |x) one must carry out a phase-
space integral with respect to the static density matrix that characterizes the initial quantum
state. This averaging makes expectation values free of singularities in time. However for
number-squeezed states the half-period singularity leads to observable, finite, time-dependent
peaks, cf figures 4(a) and (b).

A number of open questions remain. The single-mode Kerr model that we have studied
gives only a good description for photons in optical cavities of extremely high finesse. A
generalization of our results for a multi-mode theory of propagating photons would therefore
be desirable. Alternatively, an imperfect cavity could be modeled by studying a Kerr model
that is coupled to the environment and exhibits Langevin noise. Both of these aspects have
been addressed by Kärtner et al [38] and by Stobińska et al [39] in the context of a specific noise
model using the Wigner function. The description of multimode and decoherence phenomena
in the Weyl symbol representation could provide a deeper understanding of the singularities
discussed here.
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Appendix A. Weyl symbol quantum mechanics

This appendix summarizes properties of the quantum phase-space method that are employed
in this paper. We collect the various known Weyl symbol identities in a notation suitable for
quantum optics. The account below closely matches that found in [20, 40].

For a single-mode photon and a suitable choice of reference point, the electric field
strength E is proportional to â + â† (or equivalently to q̂) and the magnetic field strength B
to i(â − â†) or p̂. For this reason, the phase-space based manifold for a single mode state is
the real line R. The noncommutivity of q̂ and p̂ arises from the mode operators â and â†.
The quantum state space is that spanned by the harmonic oscillator basis, or equivalently the
Hilbert space of one-dimensional square integrable wavefunctions, H = L2(R, C). Likewise,
the associated classical phase space is T ∗

R = R
2 equipped with the standard Poisson bracket.

Weyl quantization maps functions on T ∗
R into operators onH. A unified characterization

of both quantization and de-quantization is achieved via a quantizer [41–43]. Let {�̂(x) : x =
(q, p) ∈ T ∗

R} be a x-dependent family of bounded, self-adjoint operators on H defined by
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their action on a wavefunction, ψ

ψ ′(q ′) = [�̂(q, p)ψ](q ′) ≡ 1

πξ
exp

(
2i

ξ
p (q ′ − q)

)
ψ(2q − q ′), (A.1)

or, equivalently, as an integral kernel

〈q ′|�̂(x)|q ′′〉 = 1

πξ
exp

(
i

ξ
p(q ′ − q ′′)

)
δ(2q − q ′ − q ′′) . (A.2)

Then both quantization and de-quantization are constructed from �̂(q, p) via

f̂ =
∫

T ∗R

f (x) �̂(x) d 2x, [f̂ ]w(x) = (2πξ) Tr f̂ �̂(x), (A.3)

where Tr is the trace on H. This pair of linear transformations are mutual inverses, so
f = [f̂ ]w. The notation [f̂ ]w indicates the Weyl symbol of the operator f̂ . The second
identity in equation (A.3) is proportional to the Wigner transform of f̂ , cf (1).

This bijective correspondence between phase-space functions and operators is simple
in a variety of important cases. For example, operators f (q̂), g(p̂) and the identity on
H have symbols f (q), g(p) and the constant function 1. The quantizer has symbol,
[�̂(x)]w(x ′) = δ(x − x ′); in turn, this implies that the exponential operator eiu·x̂ , u ∈ R

2

has the symbol eiu·x .
The Weyl symbol framework is a Hilbert algebra, namely a complete linear space L with

three basic structures: an associative product �, an involution ∗ and an inner product (·, ·)L.
The product of operators on H is mirrored by the noncommutative product of Weyl symbols.
This star product is defined by f � g ≡ [f̂ ĝ]w. Given the � product, the Moyal bracket is
defined as

{f, g}M = 1

iξ
[f̂ , ĝ]w = 1

iξ

(
f � g − g � f

)
. (A.4)

The � product has three useful representations.
The first is Berezin’s integral form [44]

f � g(x) = 1

(πξ)2

∫ ∫
f (x1) g(x2) exp

{
2i

ξ
(x1 ∧ x2 + x2 ∧ x + x ∧ x1)

}
d 2x1 d 2x2. (A.5)

Here x1 ∧ x2 ≡ x1 · Jx2.
Next is Groenewold’s derivative expansion [45]

f � g(x) = exp

(
iξ

2
∂1 ·J∂2

)
≺f, g � (x). (A.6)

Above ∂1 and ∂2 are gradients acting on the first (f ) and second (g) arguments of the product
≺f, g �. The Poisson bracket {f, g}, in this notation, is ∂1·J∂2 ≺f, g � followed by diagonal
evaluation, x1 = x2 = x. In the case where f, g are ξ independent and suitably smooth, the
series expansion of equation (A.6) gives a ξ -asymptotic expansion of f � g with the Poisson
bracket term as the leading semiclassical correction.

The third realization of the � product is the left and right regular representation of the
Heisenberg algebra. Define

L ≡ x +
iξ

2
J∂x, R ≡ x − iξ

2
J∂x, (A.7)

then for smooth f, g

f � g (x) = (f (L) g) (x) = (g(R) f ) (x). (A.8)

The differential operators L and R commute.
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The involution operation on L is complex conjugation. It is the symbol analog of the
adjoint operation on H. If f = [f̂ ]w then f ∗ = [f̂ †]w.

For suitably restricted f̂ , ĝ (e.g. both Hilbert–Schmidt), the trace of the operator product
defines the L inner product, in detail

(2πξ) Tr f̂ ĝ =
∫

R
2
f � g (x) d 2x =

∫
R

2
f (x) g(x) d 2x = (f ∗, g)L. (A.9)

This formula shows that quantum expectation values in L are obtained by phase-space
integration. For example, this occurs if f̂ is a density matrix and ĝ is any observable.

Weyl quantization has a simple covariance property. A unitary operator V is called
metaplectic if V x̂ V † = Sx̂ for some symplectic matrix S, i.e. SJST = J . If f̂ has the symbol
f , the affine canonical covariance property [20] is the statement that

[V f̂ V †]w(x) = f (S x). (A.10)
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[38] Kärtner F X, Joneckis L and Haus H A 1992 Quantum Opt. 4 379
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